GCP-DEN
Data Engineering on Google Cloud
AUDIENCE
Developers
LEVEL

Introductory (100) – preliminary course, overview

Intermediate (200) – the course extends the knowledge from the level 100 with specific issues

Advanced (300) – the course extends the knowledge from the level 300 with specific issues

Expert (400) – the training course involves an expert level of knowledge and experience and provides an in-depth analysis of the issue

Intermediate
LENGTH
4 days
TRAINING METHOD
vILT
PRICE

7500

Get hands-on experience with designing and building data processing systems on Google Cloud. This course uses lectures, demos, and hands-on labs to show you how to design data processing systems, build end-to-end data pipelines, analyze data, and implement machine learning. This course covers structured, unstructured, and streaming data.

AUDIENCE PROFILE

This class is intended for experienced developers who are responsible for managing big data transformations including:

  • Extracting, Loading, Transforming, cleaning, and validating data
  • Designing pipelines and architectures for data processing
  • Creating and maintaining machine learning and statistical models
  • Querying datasets, visualizing query results and creating reports

ACQUIRED SKILLS

  • Design and build data processing systems on Google Cloud.
  • Process batch and streaming data by implementing autoscaling data pipelines on Dataflow.
  • Derive business insights from extremely large datasets using BigQuery.
  • Leverage unstructured data using Spark and ML APIs on Dataproc.
  • Enable instant insights from streaming data.
  • Understand ML APIs and BigQuery ML, and learn to use AutoML to create powerful models without coding.

Introduction to Data Engineering

  • Explore the role of a data engineer
  • Analyze data engineering challenges
  • Introduction to BigQuery
  • Data lakes and data warehouses
  • Transactional databases versus data warehouses
  • Partner effectively with other data teams
  • Manage data access and governance
  • Build production-ready pipelines
  • Review Google Cloud customer case study

Building a Data Lake

  • Introduction to data lakes
  • Data storage and ETL options on Google Cloud
  • Building a data lake using Cloud Storage
  • Securing Cloud Storage
  • Storing all sorts of data types
  • Cloud SQL as a relational data lake

Building a Data Warehouse

  • The modern data warehouse
  • Introduction to BigQuery
  • Getting started with BigQuery
  • Loading data
  • Exploring schemas
  • Schema design
  • Nested and repeated fields
  • Optimizing with partitioning and clustering

Introduction to Building Batch Data Pipelines

  • EL, ELT, ETL
  • Quality considerations
  • How to carry out operations in BigQuery
  • Shortcomings
  • ETL to solve data quality issues

Executing Spark on Dataproc

  • The Hadoop ecosystem
  • Run Hadoop on Dataproc
  • Cloud Storage instead of HDFS
  • Optimize Dataproc

Serverless Data Processing with Dataflow

  • Introduction to Dataflow
  • Why customers value Dataflow
  • Dataflow pipelines
  • Aggregating with GroupByKey and Combine
  • Side inputs and windows
  • Dataflow templates
  • Dataflow SQL

Manage Data Pipelines with Cloud Data Fusion and Cloud Composer

  • Building batch data pipelines visually with Cloud Data Fusion
  • Components
  • UI overview
  • Building a pipeline
  • Exploring data using Wrangler
  • Orchestrating work between Google Cloud services with Cloud Composer
  • Apache Airflow environment
  • DAGs and operators
  • Workflow scheduling
  • Monitoring and logging

Introduction to Processing Streaming Data

  • Process Streaming Data

Serverless Messaging with Pub/Sub

  • Introduction to Pub/Sub
  • Pub/Sub push versus pull
  • Publishing with Pub/Sub code

Dataflow Streaming Features

  • Steaming data challenges
  • Dataflow windowing

High-Throughput BigQuery and Bigtable Streaming Features

  • Streaming into BigQuery and visualizing results
  • High-throughput streaming with Cloud Bigtable
  • Optimizing Cloud Bigtable performance

Advanced BigQuery Functionality and Performance

  • Analytic window functions
  • Use With clauses
  • GIS functions
  • Performance considerations

Introduction to Analytics and AI

  • What is AI?
  • From ad-hoc data analysis to data-driven decisions
  • Options for ML models on Google Cloud

Prebuilt ML Model APIs for Unstructured Data

  • Unstructured data is hard
  • ML APIs for enriching data

Big Data Analytics with Notebooks

  • What’s a notebook?
  • BigQuery magic and ties to Pandas

Production ML Pipelines

  • Ways to do ML on Google Cloud
    Vertex AI Pipelines
  • AI Hub

Custom Model Building with SQL in BigQuery ML

  • BigQuery ML for quick model building
  • Supported models

Custom Model Building with AutoML

  • Why AutoML?
  • AutoML Vision
  • AutoML NLP
  • AutoML tables

To benefit from this course, participants should have completed Google Cloud Big Data and Machine Learning Fundamentals or have equivalent experience.

Participant should also have:

  • Basic proficiency with a common query language such as SQL.
  • Experience with data modeling and ETL (extract, transform, load) activities.
  • Experience with developing applications using a common programming language such as Python.
  • Familiarity with machine learning and/or statistics

7500

Included in price:

  • Authorized instructor
  • Authorized course materials
  • Certificate of completion

All quoted prices are net prices. All prices are subject to VAT at 23%.

SCHEDULE

date id code code2 dayNumber monthPl monthEn dayPl dayEn guaranteedPl guaranteedEn price linkPl linkEn
30.06.2025 01195c2da93c403ab81efaaff0207b7c AZ-204 AZ-204 30 Czerwca June Poniedziałek Monday 5500 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 05103543b5704ffcb79bbcbe022fe80d PL-900 PL-900 30 Czerwca June Poniedziałek Monday 1700 POPROŚ O OFERTĘ ASK FOR A QUOTE
01.09.2025 1cac55392c6440a784095a53b0afe085 SC-200 SC-200 01 Września September Poniedziałek Monday 4000 POPROŚ O OFERTĘ ASK FOR A QUOTE
08.09.2025 22892850948d4014a971c9b1f5df5b68 PL-300 PL-300 08 Września September Poniedziałek Monday 3200 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 54d36b1cb13947baad5b46a84f1762d2 AWS-ACARCH AWS-ACARCH 30 Czerwca June Poniedziałek Monday 9200 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 651c5f111c18460699bf17f06d2c3beb GCP-SEC GCP-SEC 30 Czerwca June Poniedziałek Monday 5200 POPROŚ O OFERTĘ ASK FOR A QUOTE
04.08.2025 6a1f8ccbcc1748359bd6a497dc5e1137 AWS-ARCH AWS-ARCH 04 Sierpnia August Poniedziałek Monday 5200 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 77cb679b21c74f658803ac6e2c3e2960 AI-3018 AI-3018 30 Czerwca June Poniedziałek Monday 1700 POPROŚ O OFERTĘ ASK FOR A QUOTE
08.09.2025 964d60725e0e411b96bb2dc9323282c0 MB-800 MB-800 08 Września September Poniedziałek Monday 4500 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 97b73ed4f02d4d4ca0b80830569b7350 DP-420 DP-420 30 Czerwca June Poniedziałek Monday 4000 POPROŚ O OFERTĘ ASK FOR A QUOTE
25.06.2025 9f1f5d7a4e654a2a9fa6cb2e4d0228dd AWS-SEC AWS-SEC 25 Czerwca June Środa Wednesday 6500 POPROŚ O OFERTĘ ASK FOR A QUOTE
27.06.2025 aa8d7e8f19354834b86d12859bc1e0e4 AI-3019 AI-3019 27 Czerwca June Piątek Friday 1700 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 b28abb3326dd464a996dc504e42a1713 AWS-MLOPS AWS-MLOPS 30 Czerwca June Poniedziałek Monday 6500 POPROŚ O OFERTĘ ASK FOR A QUOTE
27.06.2025 d9e49a0ce1be4923b5ba235b8b3a7ba6 SC-5008 SC-5008 27 Czerwca June Piątek Friday 1700 POPROŚ O OFERTĘ ASK FOR A QUOTE
30.06.2025 f383e432856d420c8b6881f20bca9a5c MS-4012 MS-4012 30 Czerwca June Poniedziałek Monday 1700 POPROŚ O OFERTĘ ASK FOR A QUOTE
code monthEn

Are you looking for another date? Contact us

We do not have a scheduled date for this training.
Contact us to find out when we can start it.

CHOOSE THE MOST CONVENIENT TRAINING COURSE METHOD

ON-SITE TRAINING

Instructor-led training courses
in your premises?

Details

vILT

Do you prefer virtual instructor-led
training method?

See how our remote training courses look like!

PROMOTIONS

In CloudTeam you can enrich any training course with a bonus of your choice!

CLOUDTEAM HAS BEEN YOUR RELIABLE IT TRAINING PARTNER FOR 20 YEARS